REMAP: Multi-Layer Entropy-Guided Pooling of Dense CNN Features for Image Retrieval
نویسندگان
چکیده
منابع مشابه
CNN as Guided Multi-layer RECOS Transform
There is a resurging interest in developing a neural-network-based solution to supervised machine learning in the last 5 years. In this talk, I will provide a theoretical foundation to the working principle of the convolutional neural network (CNN) from a signal processing viewpoint. To begin with, the RECOS transform is introduced as a basic building block for CNNs. The term “RECOS” is an acro...
متن کاملOriented pooling for dense and non-dense rotation-invariant features
This paper proposes a pooling strategy for local descriptors to produce a vector representation that is orientation-invariant yet implicitly incorporates the relative angles between features measured by their dominant orientation. This pooling is associated with a similarity metric that ensures that all the features have undergone a comparable rotation. This approach is especially effective whe...
متن کاملA Modified Grasshopper Optimization Algorithm Combined with CNN for Content Based Image Retrieval
Nowadays, with huge progress in digital imaging, new image processing methods are needed to manage digital images stored on disks. Image retrieval has been one of the most challengeable fields in digital image processing which means searching in a big database in order to represent similar images to the query image. Although many efficient researches have been performed for this topic so far, t...
متن کاملParticular object retrieval with integral max-pooling of CNN activations
Recently, image representation built upon Convolutional Neural Network (CNN) has been shown to provide effective descriptors for image search, outperforming pre-CNN features as short-vector representations. Yet such models are not compatible with geometry-aware re-ranking methods and still outperformed, on some particular object retrieval benchmarks, by traditional image search systems relying ...
متن کاملCNN Based Hashing for Image Retrieval
Along with data on the web increasing dramatically, hashing is becoming more and more popular as a method of approximate nearest neighbor search. Previous supervised hashing methods utilized similarity/dissimilarity matrix to get semantic information. But the matrix is not easy to construct for a new dataset. Rather than to reconstruct the matrix, we proposed a straightforward CNN-based hashing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Image Processing
سال: 2019
ISSN: 1057-7149,1941-0042
DOI: 10.1109/tip.2019.2917234